Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Chuan-De Wu, Quan-Zheng
 Zhang, Can-Zhong Lu,*
 Hong-Hui Zhuang and Jin-Shun Huang

The State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail: czlu@ms.fjirsm.ac.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.050$
$w R$ factor $=0.124$
Data-to-parameter ratio $=19.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Tetrabutylammonium aquatetrachlorooxomolybdate(V)

Crystals of the title compound, $\left[\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{~N}\right]\left[\mathrm{MoOCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, were synthesized by the reaction of a hydrochloric acid solution of $\mathrm{H}_{2} \mathrm{MoO}_{4}$ and $\left[\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{~N}\right] \mathrm{Cl}$ with the reducing agent $\mathrm{N}_{2} \mathrm{H}_{4} \cdot 2 \mathrm{HCl}$. The structure consists of an $\left[\mathrm{MoOCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right.$] anion and a tetrabutylammonium cation. The Mo^{V} atom is coordinated by four chlorides, one terminal oxo and one aqua ligand in a distorted octahedral geometry. The $\mathrm{Mo}-\mathrm{Cl}$ bond lengths are in the range 2.352 (2) -2.402 (1) \AA, $\mathrm{Mo}-\mathrm{O}$ (oxo) 1.647 (4) \AA and $\mathrm{Mo}-\mathrm{OH}_{2} 2.340$ (4) Å. Intermolecular $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond lengths are in the range 3.232-3.336 \AA for $\mathrm{O} \cdots \mathrm{Cl}$.

Comment

Molybdenum in its higher oxidation states readily forms polynuclear anionic metal-oxygen clusters and many polymolybdates with a wide variety of geometrical and electronic structures have been reported (Pope \& Müller, 1991; Müller et al., 1995, 1998; Müller \& Serain, 2000). However, the synthesis of polymolybdates with bridging chlorine atoms is far less well developed. In the course of our work on the synthesis of chlorine-bridged polymolybdates, the title compound, (I), was unexpectedly obtained as single crystals.

(I)

The X-ray structure analysis of (I) reveals that the geometry of the $\left[\mathrm{MoOCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{-}$anion is similar to those of its analogues (Bino \& Cotton, 1979; Boorman et al., 1975; Cindric et al., 1996; Garner et al., 1977; Junk \& Atwood, 1998; Kepert et al., 1997). As shown in Fig. 1, the coordination environment of the Mo atom is a distorted octahedron with the cis angles at Mo ranging from 80.4 (1) to $99.8(2)^{\circ}$. The $\mathrm{Mo}=\mathrm{O}$ bond length of 1.647 (4) \AA and the $\mathrm{Mo}-\mathrm{O}_{\text {water }}$ bond length of 2.340 (4) \AA are typical values for terminal oxygen and aqua bond lengths to Mo . The $\mathrm{Mo}-\mathrm{Cl}$ bond lengths are in the range 2.352 (2)-2.402 (1) \AA, the cis $-\mathrm{Cl}-\mathrm{Mo}-\mathrm{Cl}$ angles are 88.3 (1)-89.1 (1) ${ }^{\circ}$, and the $\mathrm{O}=\mathrm{Mo}-\mathrm{OH}_{2}$ angle is 177.7 (2) ${ }^{\circ}$, so the $\left[\mathrm{MoOCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{-}$anion deviates only slightly from $C_{4 v}$ symmetry.

Anions are linked in pairs through $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds involving the aqua ligands (Table 2). As shown in the

Received 1 October 2001
Accepted 10 October 2001 Online 13 October 2001

Figure 1
The cation and anion of (I) shown with 30% probability ellipsoids.

Figure 2
Packing diagram of (I), viewed down the a axis.
packing of the cations and anions in the crystal structure, there are no other significant interactions (Fig. 2).

Experimental

A solution of $\mathrm{H}_{2} \mathrm{MoO}_{4}(4.86 \mathrm{~g}, 30 \mathrm{mmol})$ in 20 ml concentrated HCl and 20 ml water was stirred with $\mathrm{N}_{2} \mathrm{H}_{4} \cdot 2 \mathrm{HCl}(0.75 \mathrm{~g}, 7.14 \mathrm{mmol})$ for about 1 h , resulting in a green mixture. $\left[\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{~N}\right] \mathrm{Cl}(2.77 \mathrm{~g}$, $10 \mathrm{mmol})$ was added and the solution was filtered. Green crystals of the title compound formed after a few days.

Crystal data

$\left(\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{~N}\right)\left[\mathrm{MoOCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=514.21$
Monoclinic, $P 2_{1} / n$
$a=9.401(1) \AA$
$b=15.770(1) \AA$
$c=16.845(1) \AA$
$\beta=95.581(1)^{\circ}$
$V=2485.6(2) \AA^{3}$
$Z=4$
$D_{x}=1.374 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3968
\quad reflections
$\theta=1.8-25.1^{\circ}$
$\mu=0.97 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Prism, green
$0.45 \times 0.20 \times 0.10 \mathrm{~mm}$

Data collection

SMART CCD diffractometer
φ and ω scans
Absorption correction: empirical
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.644, T_{\text {max }}=0.908$
8905 measured reflections
4368 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.124$
$S=1.15$
4368 reflections
225 parameters
H -atom parameters constrained

3157 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=25.1^{\circ}$
$h=-11 \rightarrow 11$
$k=-13 \rightarrow 18$
$l=-20 \rightarrow 13$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0375 P)^{2}\right. \\
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0375 P)^{2}\right. \\
& +3.4179 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.54 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\text {min }}=-0.45 \mathrm{e}_{\AA^{-3}} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0010 \text { (3) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

$\mathrm{Mo}-\mathrm{O}$	$1.647(4)$	$\mathrm{Mo}-\mathrm{Cl} 4$	$2.358(1)$
$\mathrm{Mo}-\mathrm{O} W$	$2.340(4)$	$\mathrm{Mo}-\mathrm{Cl} 1$	$2.380(1)$
$\mathrm{Mo}-\mathrm{Cl} 2$	$2.352(2)$	$\mathrm{Mo}-\mathrm{Cl} 3$	$2.402(1)$
$\mathrm{O}-\mathrm{Mo}-\mathrm{OW}$	$177.7(2)$	$\mathrm{Cl} 2-\mathrm{Mo}-\mathrm{Cl} 1$	$88.3(1)$
$\mathrm{O}-\mathrm{Mo}-\mathrm{Cl} 2$	$99.8(2)$	$\mathrm{Cl} 4-\mathrm{Mo}-\mathrm{Cl} 1$	$162.7(1)$
$\mathrm{OW}-\mathrm{Mo}-\mathrm{Cl} 2$	$82.48(11)$	$\mathrm{O}-\mathrm{Mo}-\mathrm{Cl} 3$	$97.3(2)$
$\mathrm{O}-\mathrm{Mo}-\mathrm{Cl} 4$	$99.0(2)$	$\mathrm{OW}-\mathrm{Mo}-\mathrm{Cl} 3$	$80.4(1)$
$\mathrm{OW}-\mathrm{Mo}-\mathrm{Cl} 4$	$81.5(1)$	$\mathrm{Cl} 2-\mathrm{Mo}-\mathrm{Cl} 3$	$162.9(1)$
$\mathrm{Cl} 2-\mathrm{Mo}-\mathrm{Cl} 4$	$89.1(1)$	$\mathrm{Cl} 4-\mathrm{Mo}-\mathrm{Cl} 3$	$88.6(1)$
$\mathrm{O}-\mathrm{Mo}-\mathrm{Cl} 1$	$98.3(2)$	$\mathrm{Cl} 1-\mathrm{Mo}-\mathrm{Cl} 3$	$88.8(1)$
$\mathrm{OW}-\mathrm{Mo}-\mathrm{Cl} 1$	$81.1(1)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} W-\mathrm{H} W 1 \cdots \mathrm{Cl}^{\mathrm{i}}$	0.84	2.61	$3.338(4)$	145
$\mathrm{O}^{\mathrm{i}} W-\mathrm{H} W 2 \cdots \mathrm{Cl}^{\mathrm{i}}$	0.85	2.47	$3.238(4)$	151

Symmetry code: (i) $2-x, 1-y, 2-z$.
H atoms on C atoms were generated geometrically. Aqua H atoms were clearly visible in a different map and were positioned geometrically and included in the structure-factor calculations as riding atoms with fixed isotropic displacement parameters.

Data collection: SMART (Siemens, 1996); cell refinement: SMART and SAINT (Siemens, 1994); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1994); software used to prepare material for publication: SHELXL97.

We gratefully thank the Chinese Academy of Sciences, the State Personnel Ministry and NSFC (20073048) for financial support.

References

Bino, A. \& Cotton, F. A. (1979). J. Am. Chem. Soc. 101, 4150-4154.
Boorman, K. M., Garner, C. D. \& Mabbs, F. E. (1975). J. Chem. Soc. Dalton Trans. pp. 1299-1306.
Cindric, M., Matkovic Calogovic, D. \& Kamenar, B. (1996). Inorg. Chim. Acta, 248, 103-106.

metal-organic papers

Garner, C. D., Hill, L. H., Mabbs, F. E., McFadden, D. L. \& McPhail, A. T. (1977). J. Chem. Soc. Dalton Trans. pp. 1202-1207.

Junk, P. C. \& Atwood, J. L. (1998). J. Organomet. Chem. 565, 179-186.
Kepert, C. J., Kurmoo, M., Truter, M. R. \& Day, P. (1997). J. Chem. Soc. Dalton Trans. pp. 607-613.
Müller, A., Peters, F., Pope, M. T. \& Gatteschi, D. (1998). Chem. Rev. 98, 239271.

Müller, A., Reuter, H. \& Dillinger, S. (1995). Angew. Chem. Int. Ed. Engl. 34, 2328-2361.

Müller, A. \& Serain, C. (2000). Acc. Chem. Res. 33, 2-10.
Pope, M. T. \& Müller, A. (1991). Angew Chem. Int. Ed. Engl. 30, 34-48.
Sheldrick G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1994). SAINT and SHELXTL (Version 5). Siemens Analytical Xray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

